We're sorry, but OSHAcademy doesn't work properly without JavaScript enabled. Please turn on JavaScript or install a browser that supports Javascript.

615 Electrical Safety - Hazards and Controls
Skip to main content

Low Voltage Does Not Mean Low Hazard

This table shows what usually happens for a range of currents (lasting one second) at typical household voltages. Longer exposure times increase the danger to the shock victim. For example, a current of 100 mA applied for 3 seconds is as dangerous as a current of 900 mA applied for a fraction of a second (0.03 seconds).

Effects of Electrical Current* on the Body

Current Reaction
1 milliamp Just a faint tingle.
5 milliamps Slight shock felt. Disturbing, but not painful. Most people can "let go." However, strong involuntary movements can cause injuries.
6-25 milliamps (women)**
9-30 milliamps (men)
Painful shock. Muscular control is lost. This is the range where "freezing currents" start. It may not be possible to "let go."
50-150 milliamps Extremely painful shock, respiratory arrest (breathing stops), severe muscle contractions. Flexor muscles may cause holding on; extensor muscles may cause intense pushing away. Heart fibrillation possible. Death is possible.
1,000-4,300 milliamps (1-4.3 amps) Rhythmic pumping action of the heart ceases. Muscular contraction and nerve damage occur; death likely.
10,000 milliamps (10 amps) Cardiac arrest and severe burns occur. Death is probable.
15,000 milliamps (15 amps) Lowest overcurrent at which a typical fuse or circuit breaker opens a circuit!

*Effects are for voltages less than about 600 volts. Higher voltages also cause severe burns.
**Differences in muscle and fat content affect the severity of shock.

Knowledge Check Choose the best answer for the question.

1-5. Which of the following is the lowest level of electrical current that can cause heart fibrillation and death?