We're sorry, but OSHAcademy doesn't work properly without JavaScript enabled. Please turn on JavaScript or install a browser that supports Javascript.

805 Fall Protection in Construction
Skip to main content

Personal Fall-Arrest Systems (PFAS)

The Anchorage System

An anchorage system is a secure point of attachment for lifelines, lanyards, or deceleration devices. How can you be sure that an anchorage is secure?

2 separate Anchors screwed into plywood
An anchorage system is a secure point of attachment for lifelines, lanyards, or deceleration devices.

An anchorage for a personal fall-arrest system must support at least 5,000 pounds. Anchorages that can't support 5,000 pounds must be designed and installed under the supervision of a qualified person and must be able to maintain a safety factor of at least two - twice the impact force of a worker free-falling 6 feet. If you don't know how much weight an anchorage will support, have a qualified person check it before you trust your life to it.

Anchorage strength is critical, but is not the only factor to consider. Other important factors to consider include thefollowing

  • Anchorage connector: Unless an existing anchorage has been designed to accept a lanyard or lifeline, you'll need to attach an anchorage connector - a device that provides a secure attachment point. Examples include tie-off adapters, hook anchors, beam connectors, and beam trolleys. Be sure that the connector is compatible with the lanyard or lifeline and appropriate for the work task.
  • Attachment point: The anchorage can be used only as the attachment point for a personal fall-arrest system; it can't be used to support or suspend platforms.
  • Location: The anchorage should be located directly above the worker, if possible, to reduce the chance of a swing fall.
  • Fall distance: Because a personal fall-arrest system doesn't prevent a fall, the anchorage must be high enough above a worker to ensure that the arrest system, and not the next lower level, stops the fall.
  • Connectors: An anchorage, a lanyard, and a body harness are not useful until they're linked together. Connectors do the linking; they make the anchorage, the lanyard, and the harness a complete system. Connectors include carabiners, snap hooks, and D-rings.
Components of a Fall Arrest System
  • Carabiner: This high-tensile alloy steel connector has a locking gate and is used mostly in specialized work such as window cleaning and high-angle rescue. Carabiners must have a minimum tensile strength of 5,000 pounds.
  • Snap hook: A hook-shaped member with a keeper that opens to receive a connecting component and automatically closes when released. Snap hooks are typically spliced or sewn into lanyards and self-retracting lifelines. Snap hooks must be high-tensile alloy steel and have a minimum tensile strength of 5,000 pounds. Use only locking snap hooks with personal fall-arrest systems; locking snap hooks have self-locking keepers that won't open until they're unlocked.
  • D-ring: D-rings are the attachment points sewn into a full-body harness. D-rings must have a minimum tensile strength of 5,000 pounds.
  • The full-body harness: The full-body harness has straps that distribute the impact of a fall over the thighs, waist, chest, shoulders, and pelvis. Full-body harnesses come in different styles, many of which are light and comfortable.

Knowledge Check Choose the best answer for the question.

5-5. How many pounds must an anchorage for a personal fall-arrest system support?